Iterative solvers are frequently used in scientific applications and engineering computations. However, the memory-bound Sparse Matrix-Vector (SpMV) kernel computation hinders the efficiency of iterative algorithms. As modern hardware increasingly supports low-precision computation, the mixed-precision optimization of iterative algorithms has garnered widespread attention. Nevertheless, existing mixed-precision methods pose challenges, including format conversion overhead, tight coupling between storage and computation representation, and the need to store multiple precision copies of data. This paper proposes a floating-point representation based on the group-shared exponent and segmented storage of the mantissa, enabling higher bit utilization of the representation vector and fast switches between different precisions without needing multiple data copies. Furthermore, a stepped mixed-precision iterative algorithm is proposed. Our experimental results demonstrate that, compared with existing floating-point formats, our approach significantly improves iterative algorithms' performance and convergence residuals.
翻译:暂无翻译