Compared to Full-Model Fine-Tuning (FMFT), Parameter Efficient Fine-Tuning (PEFT) has demonstrated superior performance and lower computational overhead in several code understanding tasks, such as code summarization and code search. This advantage can be attributed to PEFT's ability to alleviate the catastrophic forgetting issue of Pre-trained Language Models (PLMs) by updating only a small number of parameters. As a result, PEFT effectively harnesses the pre-trained general-purpose knowledge for downstream tasks. However, existing studies primarily involve static code comprehension, aligning with the pre-training paradigm of recent PLMs and facilitating knowledge transfer, but they do not account for dynamic code changes. Thus, it remains unclear whether PEFT outperforms FMFT in task-specific adaptation for code-change-related tasks. To address this question, we examine two prevalent PEFT methods, namely Adapter Tuning (AT) and Low-Rank Adaptation (LoRA), and compare their performance with FMFT on five popular PLMs. Specifically, we evaluate their performance on two widely-studied code-change-related tasks: Just-In-Time Defect Prediction (JIT-DP) and Commit Message Generation (CMG). The results demonstrate that both AT and LoRA achieve state-of-the-art (SOTA) results in JIT-DP and exhibit comparable performances in CMG when compared to FMFT and other SOTA approaches. Furthermore, AT and LoRA exhibit superiority in cross-lingual and low-resource scenarios. We also conduct three probing tasks to explain the efficacy of PEFT techniques on JIT-DP and CMG tasks from both static and dynamic perspectives. The study indicates that PEFT, particularly through the use of AT and LoRA, offers promising advantages in code-change-related tasks, surpassing FMFT in certain aspects.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员