Multi-action dialog policy, which generates multiple atomic dialog actions per turn, has been widely applied in task-oriented dialog systems to provide expressive and efficient system responses. Existing policy models usually imitate action combinations from the labeled multi-action dialog examples. Due to data limitations, they generalize poorly toward unseen dialog flows. While reinforcement learning-based methods are proposed to incorporate the service ratings from real users and user simulators as external supervision signals, they suffer from sparse and less credible dialog-level rewards. To cope with this problem, we explore to improve multi-action dialog policy learning with explicit and implicit turn-level user feedback received for historical predictions (i.e., logged user feedback) that are cost-efficient to collect and faithful to real-world scenarios. The task is challenging since the logged user feedback provides only partial label feedback limited to the particular historical dialog actions predicted by the agent. To fully exploit such feedback information, we propose BanditMatch, which addresses the task from a feedback-enhanced semi-supervised learning perspective with a hybrid objective of semi-supervised learning and bandit learning. BanditMatch integrates pseudo-labeling methods to better explore the action space through constructing full label feedback. Extensive experiments show that our BanditMatch outperforms the state-of-the-art methods by generating more concise and informative responses. The source code and the appendix of this paper can be obtained from https://github.com/ShuoZhangXJTU/BanditMatch.


翻译:多行动对话政策在面向任务的对话系统中广泛应用,它产生多原子每转一次的多次对话动作,以提供表达式和高效的系统响应。现有的政策模型通常仿照标签的多动作对话示例中的动作组合。由于数据限制,它们向看不见的对话框流的概括性差。虽然建议强化基于学习的方法将实际用户和用户模拟器的服务评级作为外部监督信号纳入其中,但是它们却受到很少和不那么可信的对话层面的奖励。为了解决这个问题,我们探索如何改进多动作对话政策学习,利用为历史预测收到的明确和隐含的转弯级用户反馈(即,登录的用户反馈)来收集并忠实于真实世界的情景。由于数据有限,它们向未知的对未知的对话框流传播不善。为了充分利用这些反馈,我们建议BanditMatch从反馈增强半超强的半超额学习角度来应对任务,同时实现半超额超额学习和按键学习的混合目标。BandatchMatch用户反馈,这是一项挑战性的任务,因为登录用户反馈仅提供部分标签反馈,通过服务器/BasmalimalMsimmalimmalMassimmalmassimmassimmal 建立整个的系统,通过Breal-halmalmalmmmmmalmusmusmmmmmmmmmmmmusmmmmmmmmmmmmmmmmusmusmusmusmmmmmmmmus。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员