Latent variable models are crucial in scientific research, where a key variable, such as effort, ability, and belief, is unobserved in the sample but needs to be identified. This paper proposes a novel method for estimating realizations of a latent variable $X^*$ in a random sample that contains its multiple measurements. With the key assumption that the measurements are independent conditional on $X^*$, we provide sufficient conditions under which realizations of $X^*$ in the sample are locally unique in a class of deviations, which allows us to identify realizations of $X^*$. To the best of our knowledge, this paper is the first to provide such identification in observation. We then use the Kullback-Leibler distance between the two probability densities with and without the conditional independence as the loss function to train a Generative Element Extraction Networks (GEEN) that maps from the observed measurements to realizations of $X^*$ in the sample. The simulation results imply that this proposed estimator works quite well and the estimated values are highly correlated with realizations of $X^*$. Our estimator can be applied to a large class of latent variable models and we expect it will change how people deal with latent variables.


翻译:隐性变量模型在科学研究中至关重要,在科学研究中,一个关键变量,如努力、能力和信念,在抽样中没有观察到,但需要确定。本文件提出一个新的方法,用以估计在含有多种测量结果的随机抽样中潜在变量$X+$的实现情况。根据测量是独立的这一关键假设,我们提供了足够条件,使抽样中X+$的实现在一个偏差类别中具有当地独特性,从而使我们能够确定是否实现了$X+$。根据我们的最佳知识,本文是第一个提供这种观察识别资料的文件。然后,我们用Kullback-Leebeller距离两种概率密度之间和不附带条件独立的数值,作为损失函数来训练一个Generalization Eripticon Networks(GEN),从观测到测量结果到在抽样中实现$X+$的映射值图。模拟结果表明,这一拟议的估算值非常有效,估计值与实现$X+$的实现情况高度相关。我们的估测算器将被用于一个巨大的可变变量。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月7日
Arxiv
0+阅读 · 2022年11月6日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员