The matrix normal model, i.e., the family of Gaussian matrix-variate distributions whose covariance matrices are the Kronecker product of two lower dimensional factors, is frequently used to model matrix-variate data. The tensor normal model generalizes this family to Kronecker products of three or more factors. We study the estimation of the Kronecker factors of the covariance matrix in the matrix and tensor normal models. For the above models, we show that the maximum likelihood estimator (MLE) achieves nearly optimal nonasymptotic sample complexity and nearly tight error rates in the Fisher-Rao and Thompson metrics. In contrast to prior work, our results do not rely on the factors being well-conditioned or sparse, nor do we need to assume an accurate enough initial guess. For the matrix normal model, all our bounds are minimax optimal up to logarithmic factors, and for the tensor normal model our bounds for the largest factor and for overall covariance matrix are minimax optimal up to constant factors provided there are enough samples for any estimator to obtain constant Frobenius error. In the same regimes as our sample complexity bounds, we show that the flip-flop algorithm, a practical and widely used iterative procedure to compute the MLE, converges linearly with high probability. Our main technical insight is that, given enough samples, the negative log-likelihood function is strongly geodesically convex in the geometry on positive-definite matrices induced by the Fisher information metric. This strong convexity is determined by the expansion of certain random quantum channels.


翻译:矩阵正态模型,即协方差矩阵为两个低维因子Kronecker积的高斯矩阵变量分布族,常用于建模矩阵变量数据。张量正态模型将该族推广至三个及以上因子的Kronecker积。本研究针对矩阵与张量正态模型中协方差矩阵Kronecker因子的估计问题展开分析。对于上述模型,我们证明最大似然估计量(MLE)在Fisher-Rao度量和Thompson度量下均能达到近乎最优的非渐近样本复杂度与近乎紧致的误差率。与已有研究不同,我们的结果不依赖于因子具有良好的条件数或稀疏性,也无需假设足够精确的初始猜测。对于矩阵正态模型,所有边界在忽略对数因子意义下达到极小极大最优;对于张量正态模型,在满足任何估计量均可获得常数Frobenius误差的样本量条件下,我们对最大因子及整体协方差矩阵的边界在忽略常数因子意义下达到极小极大最优。在与样本复杂度边界相同的参数区域内,我们证明flip-flop算法——一种计算MLE的实用且广泛使用的迭代程序——以高概率实现线性收敛。本研究的主要技术洞见在于:在足够样本量下,由Fisher信息度量诱导的正定矩阵几何空间中,负对数似然函数具有强测地凸性。该强凸性由特定随机量子通道的扩张性质所决定。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员