Interactive traffic simulation is crucial to autonomous driving systems by enabling testing for planners in a more scalable and safe way compared to real-world road testing. Existing approaches learn an agent model from large-scale driving data to simulate realistic traffic scenarios, yet it remains an open question to produce consistent and diverse multi-agent interactive behaviors in crowded scenes. In this work, we present InterSim, an interactive traffic simulator for testing autonomous driving planners. Given a test plan trajectory from the ego agent, InterSim reasons about the interaction relations between the agents in the scene and generates realistic trajectories for each environment agent that are consistent with the relations. We train and validate our model on a large-scale interactive driving dataset. Experiment results show that InterSim achieves better simulation realism and reactivity in two simulation tasks compared to a state-of-the-art learning-based traffic simulator.
翻译:互动交通模拟对于自动驾驶系统至关重要,因为它使规划者能够以比真实世界道路测试更可扩缩和安全的方式进行自动驾驶系统测试。 现有方法从大型驾驶数据中学习一种代理模型,模拟现实交通假设情景,然而,在拥挤的场景中产生一致和多样的多试剂互动行为仍然是一个未决问题。 在这项工作中,我们介绍了用于测试自主驾驶规划者的交互式交通模拟器InterSim。根据自我代理商的测试计划轨迹,InterSim对现场代理商之间相互作用关系的原因,并为每个环境代理商创造符合关系的现实轨迹。我们在大规模交互式驾驶数据集上培训和验证我们的模型。实验结果显示,InterSim在两个模拟任务中实现了更好的模拟现实主义和互动性,而两个模拟任务则与一个最先进的基于学习的交通模拟器相比。