Multiview embedding is a way to model strange attractors that takes advantage of the way measurements are often made in real chaotic systems, using multidimensional measurements to make up for a lack of long timeseries. Predictive multiview embedding adapts this approach to the problem of predicting new values, and provides a natural framework for combining multiple sources of information such as natural measurements and computer model runs for potentially improved prediction. Here, using 18 month ahead prediction of monthly averages, we show how predictive multiview embedding can be combined with simple statistical approaches to explore predictability of four climate variables by a GCM, build prediction bounds, explore the local manifold structure of the attractor, and show that even though the GCM does not predict a particular variable well, a hybrid model combining information from the GCM and empirical data predicts that variable significantly better than the purely empirical model.
翻译:多视角嵌入是模拟奇异吸引器的一种方法,它利用在真实的混乱系统中进行测量的方式,利用多层面测量来弥补缺乏长期时间序列的情况。 预测性多视角嵌入使这一方法适应预测新值的问题,并为合并多种信息来源提供了一个自然框架,例如自然测量和计算机模型运行以进行可能的改进预测。 这里,在预测月平均值之前18个月,我们展示如何将预测性多视角嵌入与简单的统计方法相结合,以探索GCM四个气候变量的可预测性,建立预测界限,探索吸引器的本地多元结构,并表明尽管GCM没有预测特定的变量井,但将GCM的信息和实证数据相结合的混合模型预测比纯粹的经验模型要多得多。