Differential privacy is a strong mathematical notion of privacy. Still, a prominent challenge when using differential privacy in real data collection is understanding and counteracting the accuracy loss that differential privacy imposes. As such, the accuracy/privacy trade-off of differential privacy needs to be balanced on a case-by-case basis. Applications in the literature tend to focus solely on analytical accuracy bounds, not include data in error prediction, or use arbitrary settings to measure error empirically. To fill the gap in the literature, we propose a novel application of factor experiments to create data aware error predictions. Basically, factor experiments provide a systematic approach to conducting empirical experiments. To demonstrate our methodology in action, we conduct a case study where error is dependent on arbitrarily complex tree structures. We first construct a tool to simulate poll data. Next, we use our simulated data to construct a least squares model to predict error. Last, we show how to validate the model. Consequently, our contribution is a method for constructing error prediction models that are data aware.


翻译:隐私差异是一个很强的数学隐私概念。然而,在实际数据收集中使用不同的隐私时,一个突出的挑战是理解和抵消差异隐私带来的准确性损失。因此,差异隐私的准确性/隐私权衡需要逐案平衡。文献的应用往往只侧重于分析准确性界限,不包括错误预测中的数据,或使用任意设置来测量错误。为了填补文献中的空白,我们提议对要素进行新的应用,以生成数据认知错误预测。基本上,要素实验为进行实验提供了系统的方法。为了展示我们的方法,我们进行案例研究,误差取决于任意复杂的树结构。我们首先建立一个模拟民意数据的工具。接下来,我们利用模拟数据构建一个最小的方形模型来预测错误。最后,我们展示了如何验证模型。因此,我们的贡献是构建数据认知错误预测模型的方法。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
185+阅读 · 2020年7月29日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2017年10月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年7月15日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
185+阅读 · 2020年7月29日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2017年10月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员