Autoencoders are composed of coding and decoding units, hence they hold the inherent potential of high-performance data compression and signal compressed sensing. The main disadvantages of current autoencoders comprise the following several aspects: the research objective is not data reconstruction but feature representation; the performance evaluation of data recovery is neglected; it is hard to achieve lossless data reconstruction by pure autoencoders, even by pure deep learning. This paper aims for image reconstruction of autoencoders, employs cascade decoders-based autoencoders, perfects the performance of image reconstruction, approaches gradually lossless image recovery, and provides solid theory and application basis for autoencoders-based image compression and compressed sensing. The proposed serial decoders-based autoencoders include the architectures of multi-level decoders and the related optimization algorithms. The cascade decoders consist of general decoders, residual decoders, adversarial decoders and their combinations. It is evaluated by the experimental results that the proposed autoencoders outperform the classical autoencoders in the performance of image reconstruction.
翻译:自动编码器由编码和解码单位组成,因此具有高性能数据压缩和信号压缩感测的内在潜力。当前自动编码器的主要缺点包括以下几个方面:研究目标不是数据重建,而是特征代表;数据恢复的绩效评价被忽视;纯粹自动编码器即使经过纯深层学习也很难实现无损数据重建。本文的目的是重建自动编码器的图像,使用基于级联解码器的自动编码器,完善图像重建的性能,逐步采用无损图像恢复方法,并为基于自动编码器的图像压缩和压缩感测提供坚实的理论和应用基础。拟议的基于序列解码器的自动编码器结构和相关优化算法包括多级解码器的结构以及相关的优化算法。级联解码器由一般解码器、剩余解码器、对抗解码器及其组合组成。根据拟议自动编码器在图像重建过程中超越典型自动编码器的实验结果,对它进行了评估。