This paper proposes a new class of nonparametric tests for the correct specification of models based on conditional moment restrictions, paying particular attention to generalized propensity score models. The test procedure is based on two different projection arguments, leading to test statistics that are suitable to setups with many covariates, and are (asymptotically) invariant to the estimation method used to estimate the nuisance parameters. We show that our proposed tests are able to detect a broad class of local alternatives converging to the null at the usual parametric rate and illustrate its attractive power properties via simulations. We also extend our proposal to test parametric or semiparametric single-index-type models.
翻译:本文提出了一种新的非参数测试方法,用于检验条件矩限制模型的正确规范性,特别关注广义倾向得分模型。测试过程基于两种不同的投影论证,导致测试统计量适用于具有许多协变量的设置,并且是(渐近地)对用于估计干扰参数的估计方法具有不变性。我们表明,我们所提出的测试能够检测收敛到通常的参数速率的空值的广泛的局部替代方案,并通过模拟展示了其具有吸引力的功率特性。我们还将我们的提议扩展到测试参数化或半参数化单指数类型模型。