We quantify the parameter stability of a spherical Gaussian Mixture Model (sGMM) under small perturbations in distribution space. Namely, we derive the first explicit bound to show that for a mixture of spherical Gaussian $P$ (sGMM) in a pre-defined model class, all other sGMM close to $P$ in this model class in total variation distance has a small parameter distance to $P$. Further, this upper bound only depends on $P$. The motivation for this work lies in providing guarantees for fitting Gaussian mixtures; with this aim in mind, all the constants involved are well defined and distribution free conditions for fitting mixtures of spherical Gaussians. Our results tighten considerably the existing computable bounds, and asymptotically match the known sharp thresholds for this problem.
翻译:我们量化分布空间小扰动下球形高斯混合模型(sGMM)的参数稳定性。 也就是说, 我们得出第一个明确约束的参数, 以显示在预定义的模型类别中球形高斯元(sGMM)的混合物, 在这个模型类别中,所有其他接近$P的数值总变化距离小于$P。 此外, 这个上层约束只取决于$P美元。 这项工作的动机在于为安装高斯混合物提供保障; 考虑到这个目的, 所涉及的所有常数都为球形高斯元混合物的合用混合物精心定义并免费分配条件。 我们的结果大大拉紧了现有的可比较边框, 并且与这一问题已知的尖阈值基本吻合 。