We propose two robust methods for testing hypotheses on unknown parameters of predictive regression models under heterogeneous and persistent volatility as well as endogenous, persistent and/or fat-tailed regressors and errors. The proposed robust testing approaches are applicable both in the case of discrete and continuous time models. Both of the methods use the Cauchy estimator to effectively handle the problems of endogeneity, persistence and/or fat-tailedness in regressors and errors. The difference between our two methods is how the heterogeneous volatility is controlled. The first method relies on robust t-statistic inference using group estimators of a regression parameter of interest proposed in Ibragimov and Muller, 2010. It is simple to implement, but requires the exogenous volatility assumption. To relax the exogenous volatility assumption, we propose another method which relies on the nonparametric correction of volatility. The proposed methods perform well compared with widely used alternative inference procedures in terms of their finite sample properties.
翻译:我们提出了两种稳健的方法,用以测试不同和持续波动下预测回归模型的未知参数以及内生、持久性和(或)脂肪尾推回归器和误差。拟议稳健的测试方法既适用于离散和连续时间模型,也适用于离散和连续时间模型。这两种方法均使用宽度估计器有效处理递减器和误差的内分性、持久性和(或)脂肪尾细细问题。我们两种方法的区别在于如何控制混杂波动。第一种方法依赖于使用Ibragimov和Muller提出的利息回归参数群估值的强性统计推法,2010年。执行这种方法很简单,但需要外生波动假设。为了放松外生波动假设,我们提出了另一种方法,即依靠非参数性波动性校正。拟议方法在有限的抽样特性方面与广泛使用的替代推论程序进行了很好的比较。