Proper EMA-balance (E: kinetic energy; M: momentum; A: angular momentum), pressure-robustness and $Re$-semi-robustness ($Re$: Reynolds number) are three important properties of Navier-Stokes simulations with exactly divergence-free elements. This EMA-balance makes a method conserve kinetic energy, linear momentum and angular momentum under some suitable senses; pressure-robustness means that the velocity errors are independent of the continuous pressure; $Re$-semi-robustness means that the constants appearing in the error bounds of kinetic and dissipation energies do not explicitly depend on inverse powers of the viscosity. In this paper, based on the pressure-robust reconstruction methods in [{A. Linke and C. Merdon, {\it Comput. Methods Appl. Mech. Engrg.} 311 (2016), 304-326}], we propose a novel reconstruction method for a class of non-divergence-free simplicial elements which admits almost all the above properties. The only exception is the energy balance, where kinetic energy should be replaced by a properly redefined discrete energy. Some numerical comparisons with exactly divergence-free methods, pressure-robust reconstructions and the EMAC scheme are provided to confirm our theoretical results.
翻译:适当的 EMA 平衡( E: 动能; M: 动力; M: 动力; A: 角动力) 压力- 气压和 美元- 振幅- 振幅- 振幅- 振幅- 振幅- 美元( Rere$: Reynolds number) 是 Navier- Stokes 模拟的三个重要特性, 其元素完全没有差异。 这种 EMA 平衡使一种方法在某种适当感官下保存动能、 线性动力和角力; 压力- 气压- 振幅性意味着速度差错与持续压力无关; 美元- 半振幅- 振幅- 振幅- 和 美元- 振幅- 振幅- 度( ReRe$: Remonds number) 和 美元- 半振幅- 振幅- 振幅- 振幅- 和 美元- 半 半 振幅- 振幅- 振幅- 振幅- 美元( Reme- reme- refrobtal- rence- rence- rubest lats) 是 excess- excrecudemocent excent lats: extime- extime- lats) 是 ex in the excentrentrentrence the ex ex ex in the ex exfer excentrence the exfer exmin exfacts expismmmmmmm the sucent ex of the the sucive excentrus) 是 exfacts of the the sucentrence of the ex in the suvicentrence of the the the the the the the the the sucents sucentrences sucepticive- ex of the mocuts) 是 ex of the mocive- ex of the ex of the ex of the ex of the ex in sucive sucepticep ex in ex in the ex in the ex ex of the mocent