In this paper, we identify many important properties and develop criteria for the existence of subquasigroups in finite quasigroups. Based on these results, we propose an effective method that concludes the nonexistence of subquasigroup of a finite quasigroup, otherwise finds its all possible proper subquasigroups. This has an important application in checking the cryptographic suitability of a finite quasigroup. \par Further, we propose a binary operation using arithmetic of finite fields to construct quasigroups of order $p^r$. We develop the criteria under which these quasigroups have desirable cryptographic properties, viz. polynomially completeness and possessing no proper subquasigroups. Then a practical method is given to construct cryptographically suitable quasigroups. We also illustrate these methods by some academic examples and implement all proposed algorithms in the computer algebra system {\sc{Singular}}.
翻译:在本文中,我们确定了许多重要的属性,并制定了在有限准组中存在子类组的标准。根据这些结果,我们建议了一种有效的方法,以结束不存在一个有限准组的子类组,否则就能找到其所有可能适当的子类组。这在检查一个有限准组的加密适合性方面有着重要的应用。\par 此外,我们建议了一种二进制操作,使用有限字段的算术来构建准类类组 $p ⁇ r$。我们制定了这些准组具有理想的加密特性的标准,即多元完整性和没有适当的子类。然后提供了一种实用的方法来构建一个适合加密的准组。我们还用一些学术实例来说明这些方法,并在计算机代数系统中实施所有拟议的算法 {sc{singulal}。