A novel class of high-order linearly implicit energy-preserving integrating factor Runge-Kutta methods are proposed for the nonlinear Schr\"odinger equation. Based on the idea of the scalar auxiliary variable approach, the original equation is first reformulated into an equivalent form which satisfies a quadratic energy. The spatial derivatives of the system are then approximated with the standard Fourier pseudo-spectral method. Subsequently, we apply the extrapolation technique/prediction-correction strategy to the nonlinear terms of the semi-discretized system and a linearized energy-conserving system is obtained. A fully discrete scheme is gained by further using the integrating factor Runge-Kutta method to the resulting system. We show that, under certain circumstances for the coefficients of a Runge-Kutta method, the proposed scheme can produce numerical solutions along which the modified energy is precisely conserved, as is the case with the analytical solution and is extremely efficient in the sense that only linear equations with constant coefficients need to be solved at every time step. Numerical results are addressed to demonstrate the remarkable superiority of the proposed schemes in comparison with other existing structure-preserving schemes.


翻译:在非线性Schr\\'odinger方程式中,提出了新型高阶线性内隐性能量保护集成因子龙格-Kutta方法。根据星际辅助变量法的设想,最初的方程式首先被改制成一种满足二次能量的等效形式。该系统的空间衍生物随后与标准的Fourier伪光谱法相近。随后,我们将外推法/定位-修正战略应用于半分解系统和线性节能系统的非线性条件。通过进一步将因子Runge-Kutta方法用于后继系统而获得的完全离散的办法。我们表明,在某些情况下,在Runge-Kutta方法的系数条件下,拟议的办法可以产生数字解决办法,从而精确地保护了经修改的能量,正如分析解决办法的情况一样,而且非常有效,因为每个步骤都需要解决具有恒定系数的线性方程式。Numericalal-结果将用来显示与其他现有结构进行比较时所拟议的办法的惊人的优越性。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
专知会员服务
114+阅读 · 2020年10月8日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Equivariance Regularization for Image Reconstruction
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月8日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员