Accurate prediction of pedestrian and bicyclist paths is integral to the development of reliable autonomous vehicles in dense urban environments. The interactions between vehicle and pedestrian or bicyclist have a significant impact on the trajectories of traffic participants e.g. stopping or turning to avoid collisions. Although recent datasets and trajectory prediction approaches have fostered the development of autonomous vehicles yet the amount of vehicle-pedestrian (bicyclist) interactions modeled are sparse. In this work, we propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories. In particular, our dataset caters more diverse and complex interactions in dense urban scenarios compared to the existing datasets. To address the challenges in predicting future trajectories with dense interactions, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene. This enables our Joint-$\beta$-cVAE approach to better model the distribution of future trajectories. We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
翻译:对行人和自行车行道的准确预测对于在密集的城市环境中发展可靠的自主车辆是不可或缺的。车辆与行人或骑自行车者之间的互动对交通参与者的轨迹有重大影响,例如停止或转而避免碰撞。虽然最近的数据集和轨迹预测方法促进了自主车辆的发展,但模拟的机动车和自行车行车道(双骑者)互动量却很少。在这项工作中,我们提议了欧洲-PVI,即行人和自行车行车轨迹数据集。特别是,与现有数据集相比,我们的数据集在密集的城市情景中满足了更加多样和复杂的互动。为了应对预测未来轨迹与密集互动的挑战,我们开发了一个联合推论模型,以学习城市舞台上各种物剂之间显性多模式共享的多模式潜在空间。这使我们的联合-美元计算-cVAE方法能够更好地模拟未来轨迹的分布。我们实现了Nus-Scenes和Eurio-PVI自我周期预测之间的艺术成果状况,以展示准确的图像和行车自我周期性互动的重要性。