Quantum machine learning has emerged as a potential practical application of near-term quantum devices. In this work, we study a two-layer hybrid classical-quantum classifier in which a first layer of quantum stochastic neurons implementing generalized linear models (QGLMs) is followed by a second classical combining layer. The input to the first, hidden, layer is obtained via amplitude encoding in order to leverage the exponential size of the fan-in of the quantum neurons in the number of qubits per neuron. To facilitate implementation of the QGLMs, all weights and activations are binary. While the state of the art on training strategies for this class of models is limited to exhaustive search and single-neuron perceptron-like bit-flip strategies, this letter introduces a stochastic variational optimization approach that enables the joint training of quantum and classical layers via stochastic gradient descent. Experiments show the advantages of the approach for a variety of activation functions implemented by QGLM neurons.
翻译:量子机器学习是近期量子装置的一种潜在实际应用。 在这项工作中,我们研究了一种两层混合的古典-量子分类法,其中第一层实施通用线性模型(QGLMs)的量子随机神经元第一层,接着是第二层古典混合层。输入第一个、隐藏的层是通过振幅编码获得的,以便利用每个神经神经元中量子神经元的扇形的指数大小。为了便利QGLM的落实,所有重量和激活都是二进制的。虽然这一类模型的培训战略的先进程度仅限于详尽的搜索和单中微风微滑动战略,但本信引入了一种随机变异优化方法,以便能够通过光学梯度梯位下降对量子和典型层进行联合培训。实验显示了QGLM神经元实施的各种激活功能的方法的优势。