Many researchers and developers are exploring for adopting Deep Reinforcement Learning (DRL) techniques in their applications. They however often find such an adoption challenging. Existing DRL libraries provide poor support for prototyping DRL agents (i.e., models), customising the agents, and comparing the performance of DRL agents. As a result, the developers often report low efficiency in developing DRL agents. In this paper, we introduce RLzoo, a new DRL library that aims to make the development of DRL agents efficient. RLzoo provides developers with (i) high-level yet flexible APIs for prototyping DRL agents, and further customising the agents for best performance, (ii) a model zoo where users can import a wide range of DRL agents and easily compare their performance, and (iii) an algorithm that can automatically construct DRL agents with custom components (which are critical to improve agent's performance in custom applications). Evaluation results show that RLzoo can effectively reduce the development cost of DRL agents, while achieving comparable performance with existing DRL libraries.
翻译:许多研究人员和开发商正在探索在其应用中采用深强化学习(DRL)技术,但往往发现这种应用具有挑战性。现有的DRL图书馆对原型DRL代理商(即模型)提供的支持不多,对代理商进行定制,并比较DRL代理商的性能。因此,开发商往往报告说开发DRL代理商的效率较低。在本文中,我们引入了新的DRLzoo,这是一个新的DRL图书馆,目的是提高DRL代理商的发展效率。RLzoo为开发商提供了(一) 高层次的、但灵活的DRL代理商的开发价格指数,并进一步定制这些代理商的定制以达到最佳性能,(二) 示范动物园,用户可以进口范围广泛的DRL代理商并方便地比较其性能。和(三) 算法,可以自动建立具有定制组件的DRL代理商(这对于提高客户应用的性能至关重要) 。评价结果表明,RLzo可以有效地降低DRL代理商的发展成本,同时与现有的DRL图书馆实现可比较的业绩。