We study the election control problem with multi-votes, where each voter can present a single vote according different views (or layers, we use "layer" to represent "view"). For example, according to the attributes of candidates, such as: education, hobby or the relationship of candidates, a voter may present different preferences for the same candidate set. Here, we consider a new model of election control that by assigning different rules to the votes from different layers, makes the special candidate p being the winner of the election (a rule can be assigned to different layers). Assuming a set of candidates C among a special candidate "p", a set of voters V, and t layers, each voter gives t votes over all candidates, one for each layer, a set of voting rules R, the task is to find an assignment of rules to each layer that p is acceptable for voters (possible winner of the election). Three models are considered (denoted as sum-model, max-model, and min-model) to measure the satisfaction of each voter. In this paper, we analyze the computational complexity of finding such a rule assignment, including classical complexity and parameterized complexity. It is interesting to find out that 1) it is NP-hard even if there are only two voters in the sum-model, or there are only two rules in sum-model and max-model; 2) it is intractable with the number of layers as parameter for all of three models; 3) even the satisfaction of each vote is set as dichotomous, 1 or 0, it remains hard to find out an acceptable rule assignment. Furthermore, we also get some other intractable and tractable results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员