Detecting out-of-distribution (OOD) data at inference time is crucial for many applications of machine learning. We present XOOD: a novel extreme value-based OOD detection framework for image classification that consists of two algorithms. The first, XOOD-M, is completely unsupervised, while the second XOOD-L is self-supervised. Both algorithms rely on the signals captured by the extreme values of the data in the activation layers of the neural network in order to distinguish between in-distribution and OOD instances. We show experimentally that both XOOD-M and XOOD-L outperform state-of-the-art OOD detection methods on many benchmark data sets in both efficiency and accuracy, reducing false-positive rate (FPR95) by 50%, while improving the inferencing time by an order of magnitude.
翻译:在推论时间检测分布(OOOD)数据对于机器学习的许多应用至关重要。 我们提出了XOOD:一种由两种算法组成的图像分类新颖的基于极端价值的OOD检测框架。 第一个算法是XOOD-M, 完全无人监督, 而第二个XOOOD-L是自我监督的。 两种算法都依靠神经网络激活层数据极端值所采集的信号,以便区分分布和OOODD实例。 我们实验性地显示, XOOOD-M 和 XOOOD-L 在很多基准数据集中,在效率和准确性两方面,将假阳性率降低50%,同时根据数量顺序改进时间推引力。