Runge-Kutta (RK) schemes, especially Gauss-Legendre and some other fully implicit RK (FIRK) schemes, are desirable for the time integration of parabolic partial differential equations due to their A-stability and high-order accuracy. However, it is significantly more challenging to construct optimal preconditioners for them compared to diagonally implicit RK (or DIRK) schemes. To address this challenge, we first introduce mathematically optimal preconditioners called block complex Schur decomposition (BCSD), block real Schur decomposition (BRSD), and block Jordan form (BJF), motivated by block-circulant preconditioners and Jordan form solution techniques for IRK. We then derive an efficient, near-optimal singly-diagonal approximate BRSD (SABRSD) by approximating the quasi-triangular matrix in real Schur decomposition using an optimized upper-triangular matrix with a single diagonal value. A desirable feature of SABRSD is that it has comparable memory requirements and factorization (or setup) cost as singly DIRK (SDIRK). We approximate the diagonal blocks in these preconditioning techniques using an incomplete factorization with (near) linear complexity, such as multilevel ILU, ILU(0), or a multigrid method with an ILU-based smoother. We apply the block preconditioners in right-preconditioned GMRES to solve the advection-diffusion equation in 3D using finite element and finite difference methods. We show that BCSD, BRSD, and BJF significantly outperform other preconditioners in terms of GMRES iterations, and SABRSD is competitive with them and the prior state of the art in terms of computational cost while requiring the least amount of memory.


翻译:Runge- Kutta (RK) 方案, 特别是 Gaus- Legendre 和其他一些完全隐含的 RK (FIRK) 方案, 因其稳定性和高度准确性, 对抛光部分偏差方程式的时间整合是可取的。 然而, 与对等隐含RK( 或DIRK) 方案相比, 为他们建立最佳的预设程序, 要比对等隐含RK( 或DIRK) 方案更具挑战性。 为了应对这一挑战, 我们首先引入数学上最佳的预设程序, 称为块状复合Schur分解( BCSD) 、 块真实正正正正正正正正方程式( BJ) 和 直立方程式( 以直立法( IMF) 等比等的存储和分解( IMF) 等值, 以直立法( IMRR) 等值( IM) 等值, 等值, 等值(WSDSD- Ral- Ral- IL) 等值, 和 等值, 等值, 等值, IM- RIS- L 等值, 等值, 等值, 等值, 等值, 等值。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
将门创投
7+阅读 · 2018年12月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月10日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
将门创投
7+阅读 · 2018年12月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员