This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an individualized linear threshold. The goal of this paper is to develop a hypothesis testing procedure for the significance of a single element in this high-dimensional parameter as well as for the significance of a linear combination of this parameter. The difficulty dues to the high-dimensionality of the nuisance component in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both the null and local alternative hypotheses. In addition, we propose a double-smoothing approach to select the optimal bandwidth parameter in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct comprehensive simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. Finally, we apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure.
翻译:这项工作的动机是学习个人化最低临床重要性差异,这是评估各种生物医学研究中临床重要性的重要概念。我们将科学问题发展成一个高维统计问题,其中感兴趣的参数存在于一个个化线性临界线中。本文件的目的是为这一高维参数中单一元素的重要性以及该参数线性组合的意义制定一个假设测试程序。此外,我们建议采用双向移动方法,在测试中选择最佳带宽参数,并为选定的带宽提供理论保证。我们进行全面模拟研究,以证明我们提议的程序如何在实验研究中应用。为了应付这些挑战,我们通过一种新的偏差修正的平滑度计分法来建立一个测试统计,并在无效和当地替代假设下确定其无症状分布。此外,我们建议采用双向移动方法,以便在测试中选择最佳带宽参数,并为选定的带宽提供理论保证。我们进行全面模拟研究,以证明我们提议的程序如何在实验性研究中应用。最后,我们采用一个临床试验方法来评估临床试验的重要性。