Managing delivery deadlines in automated warehouses and factories is crucial for maintaining customer satisfaction and ensuring seamless production. This study introduces the problem of online multi-agent pickup and delivery with task deadlines (MAPD-D), which is an advanced variant of the online MAPD problem incorporating delivery deadlines. MAPD-D presents a dynamic deadline-driven approach that includes task deadlines, with tasks being added at any time (online), thus challenging conventional MAPD frameworks. To tackle MAPD-D, we propose a novel algorithm named deadline-aware token passing (D-TP). The D-TP algorithm is designed to calculate pickup deadlines and assign tasks while balancing execution cost and deadline proximity. Additionally, we introduce the D-TP with task swaps (D-TPTS) method to further reduce task tardiness, enhancing flexibility and efficiency via task-swapping strategies. Numerical experiments were conducted in simulated warehouse environments to showcase the effectiveness of the proposed methods. Both D-TP and D-TPTS demonstrate significant reductions in task tardiness compared to existing methods, thereby contributing to efficient operations in automated warehouses and factories with delivery deadlines.
翻译:暂无翻译