When performing Polarity Detection for different words in a sentence, we need to look at the words around to understand the sentiment. Massively pretrained language models like BERT can encode not only just the words in a document but also the context around the words along with them. This begs the questions, "Does a pretrain language model also automatically encode sentiment information about each word?" and "Can it be used to infer polarity towards different aspects?". In this work we try to answer this question by showing that training a comparison of a contextual embedding from BERT and a generic word embedding can be used to infer sentiment. We also show that if we finetune a subset of weights the model built on comparison of BERT and generic word embedding, it can get state of the art results for Polarity Detection in Aspect Based Sentiment Classification datasets.
翻译:当对句子中的不同单词进行极地探测时, 我们需要查看周围的单词来理解感知。 像 BERT 这样的大规模预先训练的语言模型不仅可以将文档中的单词编码,还可以将词前后的上下文编码。 这就引出了这样的问题 : “ 预发语言模型是否也自动将每个单词的情绪信息编码? ” 和 “ 能否用它来将极地分化到不同的方面? ” 。 在这项工作中, 我们试图通过显示可以将布设于 BERT 的背景和通用的单词嵌入的比对来比较来解析情绪。 我们还表明,如果我们对建于 BERT 和 通用单词嵌入的比对模型的分数进行微分法分析, 它就可以获得在基于星光的传感器分类数据集中进行极地探测的艺术结果的状态 。