Sentence semantic understanding is a key topic in the field of natural language processing. Recently, contextualized word representations derived from pre-trained language models such as ELMO and BERT have shown significant improvements for a wide range of semantic tasks, e.g. question answering, text classification and sentiment analysis. However, how to add external knowledge to further improve the semantic modeling capability of model is worth probing. In this paper, we propose a novel approach to combining syntax information with a pre-trained language model. In order to evaluate the effect of the pre-training model, first, we introduce RNN-based and Transformer-based pre-trained language models; secondly, to better integrate external knowledge, such as syntactic information integrate with the pre-training model, we propose a dependency syntax expansion (DSE) model. For evaluation, we have selected two subtasks: sentence completion task and biological relation extraction task. The experimental results show that our model achieves 91.2\% accuracy, outperforming the baseline model by 37.8\% on sentence completion task. And it also gets competitive performance by 75.1\% $F_{1}$ score on relation extraction task.


翻译:最近,来自ELMO和BERT等预先培训语言模型的背景化词表表明,在一系列广泛的语义任务方面,例如问答、文本分类和情绪分析等,都显示出了重大改进。然而,如何增加外部知识来进一步提高模型的语义建模能力值得考察。在本文件中,我们提出了将语法信息与预先培训的语言模型相结合的新办法。为了评估培训前模式的效果,首先,我们引入了基于RNN和基于变异器的预先培训语言模型;其次,为了更好地整合外部知识,例如合成信息与培训前模式相结合,我们建议了一个依赖性语法扩展模型。我们为评估选择了两个子任务:句尾任务和生物关系提取任务。实验结果表明,我们的模式达到了91.2 ⁇ 准确度,在完成判决后比基准模型高出37.8 ⁇ 。此外,它还获得了75.1 $ $F ⁇ 1}的竞争性业绩。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
已删除
将门创投
5+阅读 · 2019年3月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
3+阅读 · 2019年8月26日
Arxiv
3+阅读 · 2018年11月14日
Arxiv
5+阅读 · 2018年6月4日
Arxiv
27+阅读 · 2018年4月12日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
已删除
将门创投
5+阅读 · 2019年3月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员