In this study, we utilize Gaussian processes, probabilistic neural network, natural gradient boosting, and quantile regression augmented gradient boosting to model lead times of laser manufacturing processes. We introduce probabilistic modelling in the domain and compare the models in terms of different abilities. While providing a comparison between the models in real-life data, our work has many use cases and substantial business value. Our results indicate that all of the models beat the company estimation benchmark that uses domain experience and have good calibration with the empirical frequencies.
翻译:在本研究中,我们使用高斯过程、概率神经网络、自然梯度加速和四分位回归加速梯度加速到激光制造过程的周期周期。我们采用域内的概率建模,并根据不同的能力对模型进行比较。在比较实际数据模型的同时,我们的工作有许多使用案例和相当大的商业价值。我们的结果表明,所有模型都超过了使用域经验并用经验频率进行良好校准的公司估计基准。