As "a new frontier in evolutionary computation research", evolutionary transfer optimization(ETO) will overcome the traditional paradigm of zero reuse of related experience and knowledge from solved past problems in researches of evolutionary computation. In scheduling applications via ETO, a quite appealing and highly competitive framework "meeting" between them could be formed for both intelligent scheduling and green scheduling, especially for international pledge of "carbon neutrality" from China. To the best of our knowledge, our paper on scheduling here, serves as the 1st work of a class of ETO frameworks when multiobjective optimization problem "meets" single-objective optimization problems in discrete case (not multitasking optimization). More specifically, key knowledge conveyed for industrial applications, like positional building blocks with genetic algorithm based settings, could be used via the new core transfer mechanism and learning techniques for permutation flow shop scheduling problem(PFSP). Extensive studies on well-studied benchmarks validate firm effectiveness and great universality of our proposed ETO-PFSP framework empirically. Our investigations (1) enrich the ETO frameworks, (2) contribute to the classical and fundamental theory of building block for genetic algorithms and memetic algorithms, and (3) head towards the paradigm shift of evolutionary scheduling via learning by proposal and practice of paradigm of "knowledge and building-block based scheduling" (KAB2S) for "industrial intelligence" in China.
翻译:由于“进化计算研究的新前沿”,进化转移优化(ETO)将克服从进化计算研究中解决的过去问题获得的相关经验和知识的零再利用的传统模式。在通过ETO安排申请时,可以形成一个相当有吸引力和高度竞争的框架“会议”,用于智能化的时间安排和绿色时间安排,特别是用于中国的“碳中性”国际承诺。我们所了解的关于这里的时间安排的文件最充分地证实了我们拟议的ETO-PFSP框架的肯定有效性和高度普遍性。我们的调查 (1) 丰富了ETO框架,(2) 有助于在离散的情况下(而不是多任务优化),为工业应用传递的关键知识,如基于遗传算法环境的定位建筑块,可以通过新的核心转移机制和变异流动商店调度问题学习技术(PFSP)加以利用。关于深层次基准的广泛研究,从经验上证实我们拟议的ETO-PFSP框架的坚实有效性和高度普遍性。我们的调查(1) 丰富了ETO框架,(2) 有助于建立遗传算算法和微量算法的单一目标优化的单一和基本理论。更具体地说,为工业应用应用应用应用应用,例如基于基于基因算算算法的定位的定位的定位结构的定位结构,(3) 建立模式,以及中国的“通过革命性思维模式的理论,通过建立模式和革命学学模式的模型的模型的模型的列表,向“建立模式的模型的模型的模型的模型的模型的模型的模型的转变”的模型的模型的模型的模型的列表,2 的模型的转变。