Hybrid beamforming is a promising technology to improve the energy efficiency of massive MIMO systems. In particular, subarray hybrid beamforming can further decrease power consumption by reducing the number of phase-shifters. However, designing the hybrid beamforming vectors is a complex task due to the discrete nature of the subarray connections and the phase-shift amounts. Finding the optimal connections between RF chains and antennas requires solving a non-convex problem in a large search space. In addition, conventional solutions assume that perfect CSI is available, which is not the case in practical systems. Therefore, we propose a novel unsupervised learning approach to design the hybrid beamforming for any subarray structure while supporting quantized phase-shifters and noisy CSI. One major feature of the proposed architecture is that no beamforming codebook is required, and the neural network is trained to take into account the phase-shifter quantization. Simulation results show that the proposed deep learning solutions can achieve higher sum-rates than existing methods.
翻译:混合介质是提高大型MIMO系统能源效率的有希望的技术。 特别是, 亚阵列混合波束可以通过减少分流器的数量来进一步减少电力消耗。 然而, 设计混合波束矢量是一项复杂的任务, 原因是亚阵列连接和分流量的离散性质。 找到RF链和天线之间的最佳连接需要在大型搜索空间解决非convex问题。 此外, 常规解决方案假设, 完美的 CSI 是可以找到的, 而实际系统中的情况并非如此。 因此, 我们提出一种新的不受监督的学习方法, 用于设计任何次阵列结构的混合波束, 同时支持四分化的分流和吵闹的 CSI。 拟议结构的一个主要特征是, 不需要分流代码, 并且对神经网络进行培训, 以考虑到分流器的四分化。 模拟结果显示, 拟议的深层学习解决方案可以比现有方法取得更高的总和率。