Statistical inferences for high-dimensional regression models have been extensively studied for their wide applications ranging from genomics, neuroscience, to economics. However, in practice, there are often potential unmeasured confounders associated with both the response and covariates, which can lead to invalidity of standard debiasing methods. This paper focuses on a generalized linear regression framework with hidden confounding and proposes a debiasing approach to address this high-dimensional problem, by adjusting for the effects induced by the unmeasured confounders. We establish consistency and asymptotic normality for the proposed debiased estimator. The finite sample performance of the proposed method is demonstrated through extensive numerical studies and an application to a genetic data set.
翻译:暂无翻译