In this work, we present a reconfigurable data glove design to capture different modes of human hand-object interactions, which are critical in training embodied artificial intelligence (AI) agents for fine manipulation tasks. To achieve various downstream tasks with distinct features, our reconfigurable data glove operates in three modes sharing a unified backbone design that reconstructs hand gestures in real time. In the tactile-sensing mode, the glove system aggregates manipulation force via customized force sensors made from a soft and thin piezoresistive material; this design minimizes interference during complex hand movements. The virtual reality (VR) mode enables real-time interaction in a physically plausible fashion: A caging-based approach is devised to determine stable grasps by detecting collision events. Leveraging a state-of-the-art finite element method (FEM), the simulation mode collects data on fine-grained 4D manipulation events comprising hand and object motions in 3D space and how the object's physical properties (e.g., stress and energy) change in accordance with manipulation over time. Notably, the glove system presented here is the first to use high-fidelity simulation to investigate the unobservable physical and causal factors behind manipulation actions. In a series of experiments, we characterize our data glove in terms of individual sensors and the overall system. More specifically, we evaluate the system's three modes by (i) recording hand gestures and associated forces, (ii) improving manipulation fluency in VR, and (iii) producing realistic simulation effects of various tool uses, respectively. Based on these three modes, our reconfigurable data glove collects and reconstructs fine-grained human grasp data in both physical and virtual environments, thereby opening up new avenues for the learning of manipulation skills for embodied AI agents.


翻译:在这项工作中,我们展示了可重新配置的数据手套设计,以捕捉人类手球互动的不同模式,这对于培训包含人工智能(AI)剂的精细操作任务至关重要。为了完成各种具有不同特点的下游任务,我们的可重新配置的数据手套以三种模式运行,共享一个统一的主干设计,实时重建手势。在触摸感测模式中,手套系统通过软和薄的碎碎碎碎碎碎碎碎碎碎碎碎碎材料制作的定制力传感器集中了操纵力;这一设计最大限度地减少了在复杂的手动移动过程中的干扰。虚拟现实(VR)模式使得实时互动能够以物理上看似合理的方式进行:基于虚拟服务器(VR)的模式设计了一种方法,通过探测碰撞事件来确定稳定的掌握情况。模拟模式收集了由3D空间的手和物体动作构成的精细4D操纵事件的数据,以及该物体的物理特性(例如,压力和能量)随着时间的操作变化而变化。 值得注意的是,在这里展示的手套系统是第一个通过检测到更精确的物理操作操作过程,用更精确的三层数据模拟方法 来进行我们内部的机变动的系统, 数据模拟的系统,我们用三个的机变的机变的机变的系统里的数据。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员