Acoustic sensors play an important role in autonomous underwater vehicles (AUVs). Sidescan sonar (SSS) detects a wide range and provides photo-realistic images in high resolution. However, SSS projects the 3D seafloor to 2D images, which are distorted by the AUV's altitude, target's range and sensor's resolution. As a result, the same physical area can show significant visual differences in SSS images from different survey lines, causing difficulties in tasks such as pixel correspondence and template matching. In this paper, a canonical transformation method consisting of intensity correction and slant range correction is proposed to decrease the above distortion. The intensity correction includes beam pattern correction and incident angle correction using three different Lambertian laws (cos, cos2, cot), whereas the slant range correction removes the nadir zone and projects the position of SSS elements into equally horizontally spaced, view-point independent bins. The proposed method is evaluated on real data collected by a HUGIN AUV, with manually-annotated pixel correspondence as ground truth reference. Experimental results on patch pairs compare similarity measures and keypoint descriptor matching. The results show that the canonical transformation can improve the patch similarity, as well as SIFT descriptor matching accuracy in different images where the same physical area was ensonified.
翻译:声学传感器在自主水下载具(AUVs)中扮演着重要的角色。侧扫声纳(SSS)可以检测广泛的区域并提供高分辨率的逼真图像。但是,SSS将三维海底投影到二维图像上,这些图像受到AUV的高度、目标的范围和传感器的分辨率的影响而失真。因此,同一物理区域在不同勘测线的SSS图像中会显示出显著的视觉差异,从而在诸如像素对应和模板匹配等任务中带来困难。在本文中,中值升法变换方法提出了由强度校正和斜距校正组成的方法来减小上述失真。强度校正包括使用三种不同的兰伯特定律(cos、cos2、cot)进行波束模式校正和入射角校正,而斜距校正则移除垂足区并将SSS元件的位置投影到等间距的、视点独立的箱子中。所提出的方法在由HUGIN AUV收集的真实数据上进行了评估,其中人工注释的像素对应作为参考基准。在不同图像中,比较了相似性度量和关键点描述符匹配的补丁对的实验结果。结果表明,标准变换可以改善补丁相似性,以及在传感了同一物理区域的不同图像中进行SIFT描述符匹配的准确性。