We present Aquarium, a differentiable fluid-structure interaction solver for robotics that offers stable simulation, accurate coupled robot-fluid physics, and full differentiability with respect to fluid states, robot states, and shape parameters. Aquarium achieves stable simulation with accurate flow physics by integrating over the discrete, incompressible Navier-Stokes equations directly using a fully-implicit Crank-Nicolson scheme with a second-order finite-volume spatial discretization. The robot and fluid physics are coupled using the immersed boundary method by formulating the no-slip condition as an equality constraint applied directly to the Navier-Stokes system. This choice of coupling allows the fluid-structure interaction to be posed and solved as a nonlinear optimization problem. This optimization-based formulation is then exploited using the implicit-function theorem to compute derivatives. The derivatives can then be passed to a gradient-based optimization or learning framework. We demonstrate Aquarium's ability to accurately simulate coupled fluid-solid physics with numerous examples, including a cylinder in free stream and a soft robotic tail with hardware validation. We also demonstrate Aquarium's ability to provide full, analytical gradients by performing both shape and gait optimization of a robotic fish tail to maximize generated thrust.
翻译:我们展示了水族仪,这是机器人的一种不同的流体结构互动求解器,它提供稳定的模拟、精确的混合机器人流体物理学,在流体状态、机器人状态和形状参数方面完全具有差异性。水族仪通过在离散、不压缩的纳维耶-斯托克斯方程式上进行整合,直接利用完全隐含的Crank-Nicolson方程式来计算衍生物,直接利用完全隐含的Crank-Nicolson方程式进行稳定流体物理学的模拟。机器人和流体物理学同时使用浸泡式边界法,设计无滑动状态,作为直接适用于纳维-斯托克斯系统的平等制约。这种组合式选择使得流体结构相互作用能够形成并作为一个非线性优化问题加以解决。这种基于优化的配方程式随后利用隐含功能的导物来利用衍生物进行计算。然后将衍生物传递到一个基于梯度的优化或学习框架。我们展示了水族系能够精确地模拟混合液态物理学的众多例子,包括一个自由流质瓶和软机尾部的尾部分析能力,我们还展示了一种完整的磁力的硬体的硬度分析。