The paper presents error estimates within a unified abstract framework for the analysis of FEM for boundary value problems with linear diffusion-convection-reaction equations and boundary conditions of mixed type. Since neither conformity nor consistency properties are assumed, the method is called completely discrete. We investigate two different stabilized discretizations and obtain stability and optimal error estimates in energy-type norms and, by generalizing the Aubin-Nitsche technique, optimal error estimates in weaker norms.
翻译:本文件在一个统一的抽象框架内提出错误估计,供FEM分析线性扩散-对流-反应方程式和混合型边界条件的边界值问题,因为既不假定一致,也不假定一致性,因此该方法称为完全分离。我们调查两种不同的稳定离散,在能源类型规范中取得稳定性和最佳误差估计,并通过推广Aubin-Nitsche技术,在较弱规范中得出最佳误差估计。