Most current neural networks for reconstructing surfaces from point clouds ignore sensor poses and only operate on raw point locations. Sensor visibility, however, holds meaningful information regarding space occupancy and surface orientation. In this paper, we present two simple ways to augment raw point clouds with visibility information, so it can directly be leveraged by surface reconstruction networks with minimal adaptation. Our proposed modifications consistently improve the accuracy of generated surfaces as well as the generalization ability of the networks to unseen shape domains. Our code and data is available at https://github.com/raphaelsulzer/dsrv-data.
翻译:目前大多数从点云层重建表面的神经网络都忽略了传感器的配置,而且只能在原始点位置运作。传感器的可见度包含了关于空间占用和地表方向的有意义的信息。在本文件中,我们提出了两个简单的方法,用可见度信息来增加原始点云层,以便地面重建网络能够直接加以利用,但适应性最小。我们提议的修改不断提高生成表面的准确性以及这些网络对无形形状域的概括性能力。我们的代码和数据可以在https://github.com/raphaelsellszer/dsrv-data上查阅。