Bayesian paradigm takes advantage of well fitting complicated survival models and feasible computing in survival analysis owing to the superiority in tackling the complex censoring scheme, compared with the frequentist paradigm. In this chapter, we aim to display the latest tendency in Bayesian computing, in the sense of automating the posterior sampling, through Bayesian analysis of survival modeling for multivariate survival outcomes with complicated data structure. Motivated by relaxing the strong assumption of proportionality and the restriction of a common baseline population, we propose a generalized shared frailty model which includes both parametric and nonparametric frailty random effects so as to incorporate both treatment-wise and temporal variation for multiple events. We develop a survival-function version of ANOVA dependent Dirichlet process to model the dependency among the baseline survival functions. The posterior sampling is implemented by the No-U-Turn sampler in Stan, a contemporary Bayesian computing tool, automatically. The proposed model is validated by analysis of the bladder cancer recurrences data. The estimation is consistent with existing results. Our model and Bayesian inference provide evidence that the Bayesian paradigm fosters complex modeling and feasible computing in survival analysis and Stan relaxes the posterior inference.
翻译:贝叶西亚模式利用了与经常者模式相比,在应对复杂的审查制度方面具有优越性,因此在生存分析中,由于在处理复杂的审查制度方面优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优优于优于优于优于优优于优优于优于优于优于优于优优于优于优于优于优于优的优优优优优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优优优于优于优于优于优于优于优于优于优于优于优于优于优于优于优于优优优优优优的亚的优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优的优优优优优优优优优优优优的亚的亚的优优优优的优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优优