In this work we analyse the parameterised complexity of propositional inclusion (PINC) and independence logic (PIND). The problems of interest are model checking (MC) and satisfiability (SAT). The complexity of these problems is well understood in the classical (non-parameterised) setting. Mahmood and Meier (FoIKS 2020) recently studied the parameterised complexity of propositional dependence logic (PDL). As a continuation of their work, we classify inclusion and independence logic and thereby come closer to completing the picture with respect to the parametrised complexity for the three most studied logics in the propositional team semantics setting. We present results for each problem with respect to 8 different parameterisations. It turns out that for a team-based logic L such that L-atoms can be evaluated in polynomial time, then MC parameterised by teamsize is FPT. As a corollary, we get an FPT membership under the following parameterisations: formula-size, formula-depth, treewidth, and number of variables. The parameter teamsize shows interesting behavior for SAT. For PINC, the parameter teamsize is not meaningful, whereas for PDL and PIND the satisfiability is paraNP-complete. Finally, we prove that when parameterised by arity, both MC and SAT are paraNP-complete for each of the considered logics.
翻译:在这项工作中,我们分析了普惠性(PINC)和独立逻辑(PIND)的参数复杂性(PIND),感兴趣的问题是模型检查(MC)和可对比性(SAT),这些问题的复杂性在古典(非参数化)设置中得到了很好的理解。Mahmood和Meier(FoIKS 2020)最近研究了普惠性依赖逻辑(PDL)的参数复杂性(PDL),作为其工作的继续,我们将包容性和独立逻辑分类,从而更接近于完成在普惠性小组语义学设置中三种最受研究的逻辑的假设复杂性(PINT)的图象。我们为每个问题展示了8种不同的参数化结果。对于基于团队的逻辑L来说,这些问题的复杂性非常复杂。对于每个基于团队的逻辑来说,L-解剖性(FPPTL)的参数是有意义的。我们从公式大小、公式深度、树木和变量数的参数化的参数组别显示了沙特卫星(PINPINC)的令人感兴趣的行为,而我们最后的参数则证明了PNPISD的精确性。