This paper studies how to generalize Tukey's depth to problems defined in a restricted space that may be curved or have boundaries, and to problems with a nondifferentiable objective. First, using a manifold approach, we propose a broad class of Riemannian depth for smooth problems defined on a Riemannian manifold, and showcase its applications in spherical data analysis, principal component analysis, and multivariate orthogonal regression. Moreover, for nonsmooth problems, we introduce additional slack variables and inequality constraints to define a novel slacked data depth, which can perform center-outward rankings of estimators arising from sparse learning and reduced rank regression. Real data examples illustrate the usefulness of some proposed data depths.


翻译:本文研究如何将Tukey的深度概括到限制空间中可能弯曲或有边界的问题,以及非差别目标的问题。 首先,我们采用多种方法,提出一个广泛的里曼尼深度类别,用于平滑里曼多元体上界定的问题,并展示其在球体数据分析、主要组成部分分析和多变量正方形回归方面的应用。 此外,对于非单向问题,我们引入了额外的松懈变量和不平等制约,以界定新的松懈的数据深度,这可以对因稀疏学习和低级回归而形成的测算员进行中向外排序。真实数据实例说明了某些拟议数据深度的有用性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
161+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
7+阅读 · 2019年5月31日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员