Beamforming is a signal processing technique where an array of antenna elements can be steered to transmit and receive radio signals in a specific direction. The usage of millimeter wave (mmWave) frequencies and multiple input multiple output (MIMO) beamforming are considered as the key innovations of 5th Generation (5G) and beyond communication systems. The technique initially performs a beam alignment procedure, followed by data transfer in the aligned directions between the transmitter and the receiver. Traditionally, beam alignment involves periodical and exhaustive beam sweeping at both transmitter and the receiver, which is a slow process causing extra communication overhead with MIMO and massive MIMO radio units. In applications such as beam tracking, angular velocity, beam steering etc., the beam alignment procedure is optimized by estimating the beam directions using first order polynomial approximations. Recent learning-based SOTA strategies for fast mmWave beam alignment also require exploration over exhaustive beam pairs during the training procedure, causing overhead to learning strategies for higher antenna configurations. In this work, we first optimize the beam alignment cost functions e.g. the data rate, to reduce the beam sweeping overhead by applying polynomial approximations of its partial derivatives which can then be solved as a system of polynomial equations using well-known tools from algebraic geometry. At this point, a question arises: 'what is a good polynomial approximation?' In this work, we attempt to obtain a 'good polynomial approximation'. Preliminary experiments indicate that our estimated polynomial approximations attain a so-called sweet-spot in terms of the solver speed and accuracy, when evaluated on test beamforming problems.
翻译:暂无翻译