Wearable devices such as smartwatches are becoming increasingly popular tools for objectively monitoring physical activity in free-living conditions. To date, research has primarily focused on the purely supervised task of human activity recognition, demonstrating limited success in inferring high-level health outcomes from low-level signals. Here, we present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels. With a deep neural network, we set HR responses as the supervisory signal for the activity data, leveraging their underlying physiological relationship. In addition, we propose a custom quantile loss function that accounts for the long-tailed HR distribution present in the general population. We evaluate our model in the largest free-living combined-sensing dataset (comprising >280k hours of wrist accelerometer & wearable ECG data). Our contributions are two-fold: i) the pre-training task creates a model that can accurately forecast HR based only on cheap activity sensors, and ii) we leverage the information captured through this task by proposing a simple method to aggregate the learnt latent representations (embeddings) from the window-level to user-level. Notably, we show that the embeddings can generalize in various downstream tasks through transfer learning with linear classifiers, capturing physiologically meaningful, personalized information. For instance, they can be used to predict variables associated with individuals' health, fitness and demographic characteristics, outperforming unsupervised autoencoders and common bio-markers. Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.


翻译:智能观察等可移植设备正在日益成为客观监测自由生活条件下体育活动的流行工具。 到目前为止,研究主要侧重于纯粹监督的人类活动识别任务,显示从低层次信号推断高层次健康成果的成功程度有限。在这里,我们展示了一种新的自我监督的代谢学习方法,使用活动和心率(HR)信号,而没有语义标签。有了深厚的神经网络,我们将HR反应设定为活动数据的监督信号,利用其内在生理关系。此外,我们提议了一个定制的量化损失功能,用于计算一般人口长期的HR分布。我们在最大的自由生活综合个人数据集(包括手腕加速计和可磨损ECG数据的>280k小时)中评估了我们的模式。我们的贡献有两重:一,培训前任务创造了一个模型,只能根据廉价活动传感器来准确预测HR,并且利用其内在生理关系。我们利用这一任务获取的信息,方法是提出一个简单的方法,将所学得的不透的潜伏性展示(嵌入式的)在总体健康水平上进行自我评估,我们用到深度的深度数据,我们用到深度的深度的深度数据,通过深度的深度的深度数据,通过深度的深度的深度的深度数据,可以显示,从深度的深度数据到深度的深度数据,从浏览到浏览到深度的深度数据, 水平上,可以显示到深度数据到深度的深度的深度的深度的深度的深度的深度数据, 学习到深度数据到深度的深度的深度的深度的深度的深度的层次, 。

0
下载
关闭预览

相关内容

可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能,可穿戴设备将会对我们的生活、感知带来很大的转变。
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
60+阅读 · 2020年1月10日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年1月13日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
60+阅读 · 2020年1月10日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员