Link prediction based on knowledge graph embedding (KGE) aims to predict new triples to complete knowledge graphs (KGs) automatically. However, recent KGE models tend to improve performance by excessively increasing vector dimensions, which would cause enormous training costs and save storage in practical applications. To address this problem, we first theoretically analyze the capacity of low-dimensional space for KG embeddings based on the principle of minimum entropy. Then, we propose a novel knowledge distillation framework for knowledge graph embedding, utilizing multiple low-dimensional KGE models as teachers. Under a novel iterative distillation strategy, the MulDE model produces soft labels according to training epochs and student performance adaptively. The experimental results show that MulDE can effectively improve the performance and training speed of low-dimensional KGE models. The distilled 32-dimensional models are very competitive compared to some of state-or-the-art (SotA) high-dimensional methods on several commonly-used datasets.


翻译:基于知识图形嵌入(KGE)的链接预测(KGE)旨在预测自动完成知识图形(KGs)的新三重数据。然而,最近的KGE模型往往通过过度增加矢量维度来提高性能,从而产生巨大的培训成本并节省实际应用中的储存量。为了解决这一问题,我们首先从理论上分析基于最小加密原则的KG嵌入的低维空间能力。然后,我们提出了一个知识图形嵌入新知识蒸馏框架,利用多个低维KGE模型作为教师。根据新颖的迭代蒸馏战略,MulDE模型根据培训小区和学生的适应性能生成软标签。实验结果表明,MulDE能够有效地提高低维KGE模型的性能和培训速度。蒸馏的32维模型与一些常用的数据集的州-或艺术(SotA)高维方法相比,具有很强的竞争力。

0
下载
关闭预览

相关内容

【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
66+阅读 · 2020年7月12日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
95+阅读 · 2020年3月25日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
102+阅读 · 2020年3月4日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Knowledge Distillation from Internal Representations
Arxiv
4+阅读 · 2019年10月8日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
4+阅读 · 2019年2月8日
VIP会员
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
102+阅读 · 2020年3月4日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Knowledge Distillation from Internal Representations
Arxiv
4+阅读 · 2019年10月8日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
4+阅读 · 2019年2月8日
Top
微信扫码咨询专知VIP会员