There is an increasing convergence between biologically plausible computational models of inference and learning with local update rules and the global gradient-based optimization of neural network models employed in machine learning. One particularly exciting connection is the correspondence between the locally informed optimization in predictive coding networks and the error backpropagation algorithm that is used to train state-of-the-art deep artificial neural networks. Here we focus on the related, but still largely under-explored connection between precision weighting in predictive coding networks and the Natural Gradient Descent algorithm for deep neural networks. Precision-weighted predictive coding is an interesting candidate for scaling up uncertainty-aware optimization -- particularly for models with large parameter spaces -- due to its distributed nature of the optimization process and the underlying local approximation of the Fisher information metric, the adaptive learning rate that is central to Natural Gradient Descent. Here, we show that hierarchical predictive coding networks with learnable precision indeed are able to solve various supervised and unsupervised learning tasks with performance comparable to global backpropagation with natural gradients and outperform their classical gradient descent counterpart on tasks where high amounts of noise are embedded in data or label inputs. When applied to unsupervised auto-encoding of image inputs, the deterministic network produces hierarchically organized and disentangled embeddings, hinting at the close connections between predictive coding and hierarchical variational inference.
翻译:生物上可信的推断和学习的计算模型与本地更新规则以及机器学习中使用的神经网络模型全球梯度优化,一个特别令人兴奋的联系是预测编码网络中当地知情优化的预测编码网络与用于培训最先进的深层人工神经网络的错误反反向剖析算法之间的对应关系。我们在这里集中关注相关关系,但在预测编码网络的精确加权与深神经网络的自然梯度潜伏源算法之间,仍然基本上探索不足的联系。精确加权预测编码是提升不确定性优化 -- -- 特别是具有大参数空间模型的模型 -- -- 的一个令人感兴趣的候选点,原因是其优化过程的分布性质以及渔业信息衡量的本地近似值,适应率是自然梯度源源中心。我们在这里显示,具有可学习精确度的等级预测编码网络能够解决各种监督和不严密的学习任务,其性能与自然梯度的反向调整相当,并且超越其在高等级级级化输入数据和高级级级链接中应用的高级梯度和高级级级对等任务之间的典型梯级对应关系。