Neural networks have demonstrated state-of-the-art performance in various machine learning fields. However, the introduction of malicious perturbations in input data, known as adversarial examples, has been shown to deceive neural network predictions. This poses potential risks for real-world applications such as autonomous driving and text identification. In order to mitigate these risks, a comprehensive understanding of the mechanisms underlying adversarial examples is essential. In this study, we demonstrate that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's incorrect prediction, in contrast to the widely held belief that human-unidentifiable characteristics play a critical role in fooling a network. This concept of human-recognizable characteristics enables us to explain key features of adversarial perturbations, including their existence, transferability among different neural networks, and increased interpretability for adversarial training. We also uncover two unique properties of adversarial perturbations that deceive neural networks: masking and generation. Additionally, a special class, the complementary class, is identified when neural networks classify input images. The presence of human-recognizable information in adversarial perturbations allows researchers to gain insight into the working principles of neural networks and may lead to the development of techniques for detecting and defending against adversarial attacks.


翻译:在各种机器学习领域,神经网络表现出了最先进的表现,然而,在输入数据中引入恶意扰动(称为对抗性实例)已经证明欺骗了神经网络预测,这给现实世界应用带来潜在风险,例如自主驱动和文本识别。为了减轻这些风险,必须全面了解对抗性实例背后的机制。在本研究中,我们证明对抗性扰动包含可识别的人类信息,这是造成神经网络错误预测的关键密谋者,与人们普遍认为人类特征不可辨特征在愚弄网络方面起着关键作用形成对照。这种人类可辨识特征的概念使我们能够解释对抗性干扰的主要特征,包括其存在、不同神经网络之间的可转移性,以及提高对抗性培训的可解释性。我们还发现,对抗性扰动神经网络的两种独特的特征:掩蔽和生成。此外,在将可辨识性特征网络的辅助类中,在对可辨识性攻击性图像进行分解时,可识别性研究人员的可辨识性定位技术。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
59+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Optimization and Optimizers for Adversarial Robustness
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员