The robust tensor completion (RTC) problem, which aims to reconstruct a low-rank tensor from partially observed tensor contaminated by a sparse tensor, has received increasing attention. In this paper, by leveraging the superior expression of the fully-connected tensor network (FCTN) decomposition, we propose a $\textbf{FCTN}$-based $\textbf{r}$obust $\textbf{c}$onvex optimization model (RC-FCTN) for the RTC problem. Then, we rigorously establish the exact recovery guarantee for the RC-FCTN. For solving the constrained optimization model RC-FCTN, we develop an alternating direction method of multipliers (ADMM)-based algorithm, which enjoys the global convergence guarantee. Moreover, we suggest a $\textbf{FCTN}$-based $\textbf{r}$obust $\textbf{n}$on$\textbf{c}$onvex optimization model (RNC-FCTN) for the RTC problem. A proximal alternating minimization (PAM)-based algorithm is developed to solve the proposed RNC-FCTN. Meanwhile, we theoretically derive the convergence of the PAM-based algorithm. Comprehensive numerical experiments in several applications, such as video completion and video background subtraction, demonstrate that proposed methods are superior to several state-of-the-art methods.
翻译:在本文件中,我们通过利用完全连通的太阳能网络分解的高级表现,提出了基于美元(textbf{r}美元)的基于美元(textbf{r}美元(美元)的基于美元(textbf{c}美元)的视频优化模式。然后,我们严格地为RC-FCTN建立准确的回收保证。为了解决限制的优化模型RC-FCTN,我们制定了一种基于倍增效应算法(ADMM)的交替方向方法,这一方法享有全球趋同保证。此外,我们建议为RTC问题开发一种基于$(textbff{r}美元)的基于美元(textbf{c}美元)的视频优化模型(RC-FCTN)的美元(RNC-CTN)。