Group synchronization refers to estimating a collection of group elements from the noisy pairwise measurements. Such a nonconvex problem has received much attention from numerous scientific fields including computer vision, robotics, and cryo-electron microscopy. In this paper, we focus on the orthogonal group synchronization problem with general additive noise models under incomplete measurements, which is much more general than the commonly considered setting of complete measurements. Characterizations of the orthogonal group synchronization problem are given from perspectives of optimality conditions as well as fixed points of the projected gradient ascent method which is also known as the generalized power method (GPM). It is well worth noting that these results still hold even without generative models. In the meantime, we derive the local error bound property for the orthogonal group synchronization problem which is useful for the convergence rate analysis of different algorithms and can be of independent interest. Finally, we prove the linear convergence result of the GPM to a global maximizer under a general additive noise model based on the established local error bound property. Our theoretical convergence result holds under several deterministic conditions which can cover certain cases with adversarial noise, and as an example we specialize it to the setting of the Erd\"os-R\'enyi measurement graph and Gaussian noise.


翻译:群集同步是指对来自噪音对称测量的集合群元素进行估计。 这种非混凝土问题已经从许多科学领域,包括计算机视觉、机器人和冷冻电子显微镜等许多科学领域得到很多关注。 在本文中,我们侧重于在不完全测量下与普通添加噪声模型同步的正方形组合同步问题,这比通常考虑的完整测量设置更为普遍。正方形组同步问题的特点来自最佳性条件的视角以及预测梯度为中心法的固定点,该方法也被称为普遍权力法(GPM ) 。非常值得指出的是,这些结果即使没有基因化模型,也仍然存在。与此同时,我们为正方形组同步问题找出了局部误差的属性,这对不同算法的趋同率分析有用,而且可能具有独立的兴趣。 最后,我们证明GPM在基于当地既定错误属性的一般添加噪声模型下与全球最大化的线性趋同结果。 我们的理论趋同结果存在于若干确定性条件下,可以涵盖某些具有对抗性噪音的案例,并且作为我们专门设定Eral的测量的“ ” 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
185+阅读 · 2020年7月29日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月12日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员