In this article, we study the Adjacent Quadratic Shortest Path Problem (AQSPP), which consists in finding the shortest path on a directed graph when its total weight component also includes the impact of consecutive arcs. We provide a formal description of the AQSPP and propose an extension of Dijkstra's algorithm (that we denote aqD) for solving AQSPPs in polynomial-time and provide a proof for its correctness under some mild assumptions. Furthermore, we introduce an adjacent quadratic A* algorithm (that we denote aqA*) with a backward search for cost-to-go estimation to speed up the search. We assess the performance of both algorithms by comparing their relative performance with benchmark algorithms from the scientific literature and carry out a thorough collection of sensitivity analysis of the methods on a set of problem characteristics using randomly generated graphs. Numerical results suggest that: (i) aqA* outperforms all other algorithms, with a performance being about 75 times faster than aqD and the fastest alternative; (ii) the proposed solution procedures do not lose efficiency when the magnitude of quadratic costs vary; (iii) aqA* and aqD are fastest on random graph instances, compared with benchmark algorithms from scientific literature. We conclude the numerical experiments by presenting a stress test of the AQSPP in the context of real grid graph instances, with sizes up to $16 \times 10^6$ nodes, $64 \times 10^6$ arcs, and $10^9$ quadratic arcs.
翻译:在此篇文章中,我们研究了“相邻的二次快速路径问题 ” ( AQSPP), 其中包括在定向图中找到最短路径, 当总重量部分也包括连续弧的影响时, 我们正式描述AQSPP, 并提议扩展Dijkstra的算法( 我们表示aqD), 用于在多元时解决 AQSPP, 并在某些温和假设下证明它是否正确。 此外, 我们引入了一种相邻的二次A* 算法( 我们表示aqA* ), 以后向方式寻找成本对数值的估算, 以加快搜索速度。 我们评估两种算法的性能, 将其相对性能与科学文献的基准算法进行比较, 并用随机生成的图表对一系列问题特性的方法进行透彻的敏感性分析。 数字结果表明:(i) aqA* 的值比所有其他算法更优, 其性比AqD值大约75倍, 和最快速的可选的值 QA ; (ii) 建议的解算法程序比A 10qralalalalal 的数值, 的数值比A 的数值是10qraltial 。