In this work, we present an empirical study of DCGANs, including hyperparameter heuristics and image quality assessment, as a way to address the scarcity of datasets to investigate fetal head ultrasound. We present experiments to show the impact of different image resolutions, epochs, dataset size input, and learning rates for quality image assessment on four metrics: mutual information (MI), Fr\'echet inception distance (FID), peak-signal-to-noise ratio (PSNR), and local binary pattern vector (LBPv). The results show that FID and LBPv have stronger relationship with clinical image quality scores. The resources to reproduce this work are available at \url{https://github.com/budai4medtech/miua2022}.
翻译:在这项工作中,我们介绍了对DCGANs的一项经验性研究,包括超参数超光谱学和图像质量评估,以解决用于调查胎儿头超声波的数据集稀缺问题,我们介绍了实验,以显示不同图像分辨率、时代、数据集大小投入和四个指标的高质量图像评估学习率的影响:相互信息(MI)、Fr\'echet起始距离(FID)、峰值信号对噪音比率(PSNR)和当地二元模式矢量(LBPv),结果显示FID和LBPv与临床图像质量评分的关系更加密切。复制这项工作的资源可在以下网站查阅:https://github.com/budai4medtech/miu2022}。