In this paper we study the problem of measuring and testing joint independence for a collection of multivariate random variables. Using the emerging theory of optimal transport (OT) based multivariate ranks, we propose a distribution-free test for multivariate joint independence. Towards this we introduce the notion of rank joint distance correlation (RJdCov), the higher-order rank analogue of the celebrated distance covariance measure, that captures the dependencies among all the subsets of the variables. The RJdCov can be easily estimated from the data without any moment assumptions and the associated test for joint independence is universally consistent. We can calibrate the test without any knowledge of the (unknown) marginal distributions (due to the distribution-free property), both asymptotically and in finite samples. In addition to being distribution-free and universally consistent, the proposed test is also statistically efficient, that is, it has non-trivial asymptotic (Pitman) efficiency. We demonstrate this by computing the limiting local power of the test for both mixture alternatives and joint Konijn alternatives. We also use the RJdCov measure to develop a method for independent component analysis (ICA) that is easy to implement and robust to outliers and contamination. Extensive simulations are performed to illustrate the efficacy of the proposed test in comparison to other existing methods. Finally, we apply the proposed method to learn the higher-order dependence structure among different US industries based on stock prices.


翻译:在本文中,我们研究了为收集多种变式随机变量而衡量和测试联合独立的问题。使用基于最佳运输(OT)的多元变数的新兴理论,我们建议对多种变式联合独立进行无分配的测试。为此,我们引入了等级联合距离相关性的概念(RJdCov),即所庆祝的远距离共变差度测量的较高等级类比,以捕捉所有变量组群的相互依存性。RJdCov可以在不作任何假设的情况下从数据中轻易地估算出,而相关的联合独立测试是普遍的一致的。我们可以在不知晓(由于无分配属性)的)边际分布的情况下校准测试。我们还可以使用不易知的(由于无分配属性的)边际分布和定样样本来校准测试。除了无分配性和普遍一致性的概念外,拟议测试还具有统计上的效率,也就是说,它具有非边际的零线(Pitman)效率。我们通过计算混合物替代品和共同Konijn替代品之间测试的有限的地方力量来证明这一点是普遍的。我们还在不知晓的(由于无名化的(由于无名无名的)边际的)边际的)边际污染结构中,我们还利用了一种较易的测试方法来进行一项较强的模拟的模拟的测试的方法,我们用的方法来进行较易的模拟的模拟的模拟的对等式的系统进行试验。我们用的方法来分析。我们使用较易的“较易的“较易的“摩”的方法来分析。我们级的“较易的“较易的“较易”的方法,用的方法来进行着式的“较易的”的“较易的”的方法来进行着”的“较易的“较易的“较易的”的“较量性分析。我们用的方法来分析。我们的“较量性”的“较量性地”的“较制”的“较量性地”的“较量性分析。我们的“较量性分析。我们用”的“较量性分析。我们用”的“较量式的“较量性地”的“较量性地”的“较量性地”的“较量性地”的“较量性地”的“较量性地”的“较量性分析。我们

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月30日
Arxiv
0+阅读 · 2023年1月27日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员