This paper considers centralized mission-planning for a heterogeneous multi-agent system with the aim of locating a hidden target. We propose a mixed observable setting, consisting of a fully observable state-space and a partially observable environment, using a hidden Markov model. First, we construct rapidly exploring random trees (RRTs) to introduce the mixed observable RRT for finding plausible mission plans giving way-points for each agent. Leveraging this construction, we present a path-selection strategy based on a dynamic programming approach, which accounts for the uncertainty from partial observations and minimizes the expected cost. Finally, we combine the high-level plan with model predictive controllers to evaluate the approach on an experimental setup consisting of a quadruped robot and a drone. It is shown that agents are able to make intelligent decisions to explore the area efficiently and to locate the target through collaborative actions.
翻译:本文考虑了为确定一个隐藏目标而建立的多种多试剂系统的集中任务规划。我们建议采用隐蔽的Markov模型,建立一个由完全可观测的状态空间和部分可观测环境组成的混合观察环境。首先,我们迅速建造随机树(RRTs),以采用混合可观测任务计划,为每个代理商寻找合理的任务计划,为每个代理商提供路标。我们利用这一构思,提出了一个基于动态规划方法的路径选择战略,该方法将部分观测的不确定性考虑在内,并尽可能降低预期成本。最后,我们将高级计划与模型预测控制器结合起来,以评价由四重机器人和无人机组成的实验设置方法。我们表明,代理商能够做出明智的决定,高效率地探索该地区,并通过协作行动定位目标。