Existing machine learning methods for causal inference usually estimate quantities expressed via the mean of potential outcomes (e.g., average treatment effect). However, such quantities do not capture the full information about the distribution of potential outcomes. In this work, we estimate the density of potential outcomes after interventions from observational data. For this, we propose a novel, fully-parametric deep learning method called Interventional Normalizing Flows. Specifically, we combine two normalizing flows, namely (i) a nuisance flow for estimating nuisance parameters and (ii) a target flow for a parametric estimation of the density of potential outcomes. We further develop a tractable optimization objective based on a one-step bias correction for an efficient and doubly robust estimation of the target flow parameters. As a result our Interventional Normalizing Flows offer a properly normalized density estimator. Across various experiments, we demonstrate that our Interventional Normalizing Flows are expressive and highly effective, and scale well with both sample size and high-dimensional confounding. To the best of our knowledge, our Interventional Normalizing Flows are the first proper fully-parametric, deep learning method for density estimation of potential outcomes.
翻译:现有的因果推断机器学习方法通常通过潜在结果的平均值(例如平均治疗效果)来估计表达的数量。然而,这样的数量并没有捕捉潜在结果的完整信息。在本文中,我们利用观察数据估计干预后的潜在结果密度。为此,我们提出了一种名为干预正则化流的新型、完全参数化的深度学习方法。具体而言,将两个正则化流相结合,即(i)用于估计无关参数的干扰流和(ii)用于参数化估计潜在结果密度的目标流。我们进一步基于一步偏差校正开发了一个可行的优化目标,以有效且双重鲁棒地估计目标流参数。因此,我们的干预正则化流提供了一个适当规范化的密度估计器。在各种实验中,我们证明我们的干预正则化流是表达力强和非常有效的,并且与样本大小和高维混淆相关的扩展性很好。据我们所知,我们的干预正则化流是用于潜在结果密度估计的第一个适当的完全参数化深度学习方法。