Large Vision-Language Models (LVLMs) have shown significant progress in well responding to visual-instructions from users. However, these instructions, encompassing images and text, are susceptible to both intentional and inadvertent attacks. Despite the critical importance of LVLMs' robustness against such threats, current research in this area remains limited. To bridge this gap, we introduce AVIBench, a framework designed to analyze the robustness of LVLMs when facing various adversarial visual-instructions (AVIs), including four types of image-based AVIs, ten types of text-based AVIs, and nine types of content bias AVIs (such as gender, violence, cultural, and racial biases, among others). We generate 260K AVIs encompassing five categories of multimodal capabilities (nine tasks) and content bias. We then conduct a comprehensive evaluation involving 14 open-source LVLMs to assess their performance. AVIBench also serves as a convenient tool for practitioners to evaluate the robustness of LVLMs against AVIs. Our findings and extensive experimental results shed light on the vulnerabilities of LVLMs, and highlight that inherent biases exist even in advanced closed-source LVLMs like GeminiProVision and GPT-4V. This underscores the importance of enhancing the robustness, security, and fairness of LVLMs. The source code and benchmark will be made publicly available.
翻译:暂无翻译